Удивительный мир растений. о движениях растений

Десмодиум

Десмодиум еще называют телеграфным танцующим растением. Основная его особенность заключается в том, что он способен относительно быстро двигаться. Растет в основном в Азии, иногда встречается и на островах южной части Тихого океана.

Десмодиум имеет достаточно большие размеры. Он способен достигать высоты в 2 метра. Продолжительность движения может варьироваться от 3 до 5 минут. Когда одновременно начинают двигаться все листья, создается довольно интересный эффект, напоминающий танец. Растение осуществляет движение в ответ на вибрации, солнечный свет, тепло, следовательно способно двигаться и под музыку. Десмодиум вполне можно выращивать в домашних условиях и наблюдать за его волшебными танцами.

Многие необычные растения просто поражают воображение. Велик соблазн для цветоводов-любителей собрать коллекцию таких интересных экземпляров и для красоты, и для забавы.

Ростовые движения

Определение 1

Ростовые движения могут быть соединены с многообразным воздействием раздражителей. Ростовые движения, порожденные раздражителем, воздействующим в одной направленности, называют тропизмами. Ростовые движения, объединенные с рассеянным воздействием раздражителя, называют настиями.

Тропизмы бывают:

  • положительными (если растение выгибается к источнику раздражений),
  • отрицательным (изгибание совершается от источника раздражений).

Многообразные виды тропизмов приобрели свое наименование от источников раздражения.

Фототропизм — это изгиб растений под воздействием источников света. Изгиб совершается благодаря неравномерному разделению ауксина в стебельке. На теневой краю ауксин скапливается больше, и рост клеток там насыщеннее. На световой крае количество ауксина незначительно. Изгиб совершается в сторону неторопливо увеличивающихся клеток, к свету.

Геотропизм — это изгиб органов растения под воздействием силы тяжести. В большинстве случаев корни располагают положительными геотропизмами, а стебель — отрицательными.

Хемотропизм — движения растений под воздействием химических веществ. Явления хемотропизма можно просматривать на примере изгиба корня при присутствии в почве всевозможных катионов и анионов. Катионы в почвенных растворах солей порождают отрицательные хемотропизмы, а анионы — положительные. По этой причине совершается рост корней в сторону удобренных территорий почвы.

У растений возможно также наблюдать гидротропизмы и термотропизмы.

Пример 1

Примером движений растений, связанных с модифицированием интенсивности освещенности, может служить явление закрывания и открывания цветков в разное время суток. Цветки душистого табака, маттиолы, ночной красавицы раскрываются ночью, а в дневное время суток — закрыты. Цветки вьюнка, льна раскрываются утром. У разнообразных видов закрывание и открывание цветка совершается в строго предопределенное время суток. Это явление существовало известным давно. Линней, воспользовавшись им, составил цветочные часы.

Сократительные движения

Фотонастическое движение происходит благодаря заторможенному росту клеток на той или другой стороне лепестка. Можно просматривать и движения лепестков под воздействием изменения температуры (термонастии). Цветки тюльпана отворачивают лепестки в теплом помещении и прикрывают, если передвинуть растение в помещение холодное.

Сократительные движения у растений порождается толчками, прикосновениями (сейсмонастии). Примером данного вида движения сможет послужить сжимание листьев у венериной мухоловки и стыдливой мимозы, произрастающих в тропическом лесу, сжимание листьев у росянки, произрастающей на сфагновом болоте, движение тычинок у спармании.

При реакциях на раздражение растения затрачивают энергию. На беспрестанные раздражения растения перестают реагировать. Реакция устанавливается только тогда, когда реставрируется необходимое число энергии.

Некоторое движение у растений связано с изменениями тургорного давления в клетках. Так, лопасти листиков у кислицы, белой акации, клевера наклоняются в ночное время из-за того, что в верхних половинах сочленений листа тургор увеличивается. Изгиб совершается в сторону наименьшего тургорного давления. Колебания тургорного давления в клеточках конуса нарастания побега повергает то, что макушки побегов произрастают не истинно вверх, а по спирали.

Эксперименты с фототропизмом

В 1880 году Чарльз Дарвин и его сын Фрэнсис опубликовали статью, в которой они описали способность саженцев травы наклоняться к свету. В частности, они изучили эту реакцию у очень молодых растений, которые только что проросли. Их листья и побеги все еще были покрыты оболочкой, называемой колеоптиль (греч. koleós — ножны и греч. ptíon — перо).Отец и сын пробовали закрывать от света либо кончик, либо нижнюю часть колеоптиля. Благодаря этим экспериментам они обнаружили, что свет воспринимался именно на верхушке растения. Однако реакция изгиб (удлинение клеток с теневой стороны) – имел место значительно ниже кончика. Учёные пришли к выводу, что какой-то сигнал направлялся вниз от кончика растения к стеблю.

Опыт с пластинкой показывает, что химический сигнал передаётся только по затенённой части стебляОпыт с колпачком показывает, что химический сигнал передаётся именно от верхушки стебля

В 1913 году датский физиолог Питер Бойсен-Йенсен продолжил эту работу, показав, что химический сигнал, подаваемый на наконечнике, действительно отвечал за изгибание растений:

• Он отрезал кончик колеоптиля, покрыл срез желатином и вернул кончик на место. Растение продолжало сгибаться, когда подвергалось воздействию света.
• В другом эксперименте датчанин использовал вместо желатина непроницаемую пластинку слюды, и растение не реагировало на источник света. Стало понятно, что некий химический сигнал передаётся вниз по стеблю.

Бойсен-Йенсен также смог показать, что мобильный сигнал путешествовал именно по затенённой стороне его рассады. Когда пластинка вставлялась в стебель только с освещённой стороны, растение сгибалось к свету. Если она оказывалась с теневой стороны, реакции не возникало. Результаты этого эксперимента показали, что сигнал был стимулятором, а не репрессором роста. Ведь клетки удлинялись именно с затенённой стороны стебля, поворачивая всё растение по направлению к свету.

Скорость роста растений

Чтобы заметить движение, можно провести специальную видеосъемку. В результате происходящее за сутки можно пронаблюдать за несколько секунд. Ростовые движения растений ускоряются в сотни раз: на глазах ростки пробивают себе путь через почву, распускаются на деревьях почки, набухают и расцветают цветочные бутоны. В реальности очень быстро растет бамбук – в минуту на 0,6 мм. Еще большей скоростью роста обладают некоторые плодовые тела грибов. Диктиофор увеличивается в размерах на 5 мм всего лишь за одну минуту. Наибольшей подвижностью обладают низшие растения – это водоросли и грибы. К примеру, хламидомонада (водоросль) может быстро при помощи жгутиков перемещаться в аквариуме на освещенную солнцем сторону. Также передвигаются многие зооспоры, которые служат для размножения (у водорослей и грибов). Но вернемся к более сложным растениям. Цветковые совершают различные движения, которые связаны с процессом роста. Они бывают двух видов – это тропизмы и настии.

Процессы, проходящие в водной среде

Наука не стоит на месте, поэтому данные о водном обмене растений постоянно дополняются новыми фактами. Л.Г. Емельянов на основании имеющихся данных разработал ключевой подход к пониманию водного обмена растений.

Он поделил все процессы на 5 этапов:

  1. Осмотический
  2. Коллоидно-химический
  3. Теромодинамический
  4. Биохимический
  5. Биофизический

Данный вопрос продолжается активно изучаться, поскольку водный обмен непосредственно связан с водным статусом клеток. Последнее в свою очередь является показателем нормальной жизнедеятельности растения. Некоторые растительные организмы на 95% состоят из воды. В высушенном семени и спорах содержится 10% воды, в этом случае происходит минимальный метаболизм.

Вода находится во всех частях клетки, в частности, в клеточных стенках и мембранах, составляет большую часть цитоплазмы. Без воды не могли быть существовать коллоиды и молекулы белка. Подвижность цитоплазмы осуществляется за счет большого содержания воды. Также жидкая среда способствует растворению веществ, которые попадают в растение, и разносит их во все части организма.

Вода необходима для следующих процессов:

  • Гидролиз
  • Дыхание
  • Фотосинтез
  • Другие окислительно-восстановительные реакции

Именно вода помогает растению адаптироваться к внешней среде, сдерживает негативное воздействие перепадов температуры. Кроме того, без воды травянистые растения не могли бы поддерживать вертикальное положение.

Движение воды по растению

На первом этапе корневая система поглощает воду из почвы. Водные потенциалы действуют под разными знаками, что приводит к движению воды в определенном направлении. К разности потенциалов приводит транспирация и корневое давление.

Апопласт – свободное место в корне, которое состоит из сосудов ксилемы, оболочек клеток и межклеточного пространства. Апопласт в свою очередь разделен еще на два пространства, первое располагается до эндодермы, второе после нее и состоит из сосудов ксилемы. Эндодрема выполняет роль барьера, чтобы воды не переходила на пределы своего пространства. Симпласт – протопласты всех клеток объединенные частично проницаемой мембраной.

Вода проходит следующие этапы:

  1. Полупроницаемая мембрана
  2. Апопласт, частично сипласт
  3. Сосуды ксилемы
  4. Сосудистая система всех частей растений
  5. Черешки и листовые влагалища

По листу воды двигается по жилкам, они имеют ветвистую систему. Чем больше жилок имеется на листе, тем легче воды двигается по направлению к клеткам мезофилла. в данном случае количество воды в клетке уравновешено. Сосущая сила позволяет передвигаться воде от одной клетки к другой.

Растение погибнет, если ей будет недоставать жидкости и связано это не с тем, что в ней протекают биохимические реакции. Имеет значение физико-химический состав воды, в которой происходят жизненно важные процессы. Жидкость способствует появлению цитоплазматических структур, которые не могут существовать вне этой среды.

Вода образует тургор растений, поддерживает постоянную форму органов, тканей и клеток. Вода является основой внутренней среды растения и других живых организмов.

Больше информации можно узнать из видео.

Осмос усиливается аквапоринами

Вода в корневую систему поступает в зоне всасывания, через корневые волоски. Механизмы проникновения её в клетки подчиняются общим законом транспорта воды через плазмалемму. Если одиночную клетку поместить в воду, то концентрация ионов внутри ячейки будет больше, чем снаружи неё. И вода станет двигаться в клетку путём осмоса.

Однако скорость осмоса через мембрану ограничена. Долгое время учёные не могли понять, как вода может двигаться быстрее, чем предусматривает скорость осмоса. Теперь мы знаем, что осмос усиливается мембранными водными каналами, которые формируют интегральные мембранные протеины, называемые аквапоринами. Эти каналы есть в клетках животных и растений. Они проходят через мембраны вакуолей и клеточные мембраны и обеспечивают объёмный поток жидкостей.

Мембранные водные каналы ускоряют движение воды по ксилеме, обеспечивают постоянство водного баланса клетки, но они не способны изменить направление потока.

Тропизмы

Тропизмами называют движения одностороннего типа, которые реагируют на какие-либо раздражающие факторы: свет, химические вещества, силу тяжести. Если разместить на подоконнике проростки зерен ячменя или овса, через какое-то время они все развернутся в сторону улицы. Такое движение растений к свету носит название фототропизма. Растения при этом лучше используют солнечную энергию.

У многих возникает вопрос: почему стебель тянется вверх, а корень растет вниз? Такие примеры движения растений называют геотропизмом. В этом случае стебель и корень по-разному реагируют на силу тяжести. Движение направлено в разные стороны. Стебель тянется вверх, в противоположную сторону от действия силы тяжести, – это отрицательный геотропизм. По-иному ведет себя корень, он растет по направлению движений силы тяжести – это положительный геотропизм. Все тропизмы подразделяются на положительные и отрицательные.

Например, в пыльцевом зерне прорастает пыльцевая трубка. На растении своего вида рост идет прямо и достигает семяпочки, это явление носит название положительный хемотропизм. Если пыльцевое зерно попало на цветок иного вида, то трубка при росте загибается, не растет прямо, такой процесс предотвращает оплодотворение яйцеклетки. Становится очевидным, что выделенные пестиком вещества на растениях своего вида вызывают хемотропизм положительный, на чужеродных видах – отрицательный.

Двигатель жидкости

Вода поступает в растение из почвы, ее поглощение осуществляется с помощью корневой системы. Чтобы произошел водный ток, в работу вступают нижний и верхний двигатели.

Энергия, которая тратится на передвижение воды равняется сосущей силе. Чем больше растение поглотило жидкости, тем выше по значению будет водный потенциал. Если воды недостаточно, то клетки живого организма обезвоживаются, водный потенциал уменьшается, а сосущая сила увеличивается. Когда появляется градиент водного потенциала, вода начинает циркулировать по растению. Его возникновению способствует сила верхнего двигателя.

Если лист растения насыщен водой, а влажность воздуха окружающей среды повышена, то испарение происходить не будет. При этом с поверхности будет выделяться жидкость с растворенными в ней веществами, будет происходить процесс гуттации. Такое возможно, если корнями воды поглощается больше, чем успевает испаряться листьями. Гуттацию видел каждый человек, она зачастую происходит ночью или утром, при высокой влажности воздуха.

Капли выходят наружу через водяные устьица, чему способствует корневое давление. При гуттации растение теряет минеральные вещества. При этом оно избавляется от лишних солей или кальция.

Второе подобное явление – плач растений. Если к свежему срезу побега приложить стеклянную трубку, по ней будет двигаться жидкость с растворенными минеральными веществами. Происходит это, поскольку от корневой системы вода движется только в одну сторону, такое явление называется корневым давлением.

Кислица

Кислица или Оксалис — однолетнее или многолетнее травянистое растение родом из Мексики, распространено как в дикой природе, так и в домашнем цветоводстве. Отличается неприхотливостью и хорошей устойчивостью к заболеваниям.

Листья у кислицы фигурные, разделены на три или четыре части, закреплены на тонких черешках. За необычную складывающуюся форму листовых пластин растение часто называют бабочкой. При любых неблагоприятных условиях, будь то слишком яркий свет, наступление темноты или легкое касание, цветки оксалиса медленно закрываются, а листочки складываются как зонтики и поникают. Как только внешнее воздействие прекращается, листовые пластинки раскрываются.

В комнатных условиях кислица цветет почти круглый год зонтиковидными мелкими соцветиями белого, желтого, сиреневого, розового окраса. Цветки, так же как и листья, очень чувствительны: на ночь и в пасмурную погоду закрывают свои венчики.

Еще одной характерной чертой растения считаются «взрывающиеся» плоды-капсулы, которые «выстреливают» мелкими семенами, если к ним слегка прикоснуться. Из-за этой особенности растение может стать сорняком при выращивании на участке.

Движение животных

Основные движения растений мы рассмотрели. Как же движутся животные и в чем проявляются отличия этих процессов у животных и растений?

Любые виды животных имеют способность перемещения в пространстве, в отличие от растений. Во многом это зависит от среды обитания. Организмы способны передвигаться под землей, на поверхности, в воде, в воздухе и так далее. У многих способности к движению во многом схожи с человеческими. Все зависит от различных факторов: строения скелета, наличия конечностей, их формы и многого другого. Движение животных подразделяется на несколько типов, к основным относятся следующие:

  • Амебное. Такое движение характерно для амеб — одноименных организмов. Тело таких организмов одноклеточное, оно перемещается при помощи ложноножек – специальных выростов.
  • Простейшее. Аналогично амебному передвижению. Простейшие одноклеточные организмы перемещаются при помощи вращательных, колебательных, волнообразных движений вокруг собственного туловища.
  • Реактивное. Такой тип движения также характеризует простейшие организмы. В этом случае движение вперед происходит благодаря выбросу особой слизи, который толкает организм.
  • Мышечное. Самый совершенный тип движения, который свойственен всем многоклеточным. Сюда же включается и человек – высшее создание природы.

Настии

Познакомимся с другими особенностями движения растений, которые называются настии. Движения эти связаны с диффузными воздействиями окружающих условий. Настии, в свою очередь, могут быть положительными и отрицательными.

Соцветия одуванчика (корзинки) на ярком свете раскрываются, а в сумерках, при плохом освещении, — закрываются. Такой процесс называется фотонастией. У душистого табака все наоборот: цветы при уменьшении освещения начинают раскрываться. Здесь проявляется отрицательный вид фотонастии.

Другой тип абиогенного движения связан с изменением объема мертвых водосодержащих клеток. В отсутствие газовой фазы вода будет прилипать к лигноцеллюлозным клеточным стенкам. По мере того, как вода теряется при испарении с поверхности этих клеток, внутри нее может возникать значительная напряженность, в результате чего они уменьшаются в объеме, оставаясь при этом полным количеством воды. Эффект чаще всего наблюдается в некоторых травах сухих мест обитания, таких как песчаные дюны, где продольные ряды клеток на одной стороне листа действуют как пружинные шарниры, сжимающиеся в сухой атмосфере и заставляющие лист катиться в герметичный цилиндр, таким образом минимизируя потерю воды путем транспирации.

При снижении температуры воздуха цветки шафрана закрываются — это проявление термонастии. Настии в своей основе также имеют неравномерный рост. При сильном росте верхних сторон лепестков идет раскрытие, а если большей силой обладают нижние — закрытие цветка.

Из Википедии — свободной энциклопедии

Виды насестов, их недостатки и преимущества

Прежде чем браться за строительство подумайте зачем вам нужно место отдыха для кур, какой функционал оно будет выполнять, насколько практичной получиться конструкция. Ведь насест должен быть удобен не только для отдыха кур, но для фермера, обслуживающего курятник.

Цены на различные виды бруса

Брус

Наиболее часто встречающийся вариант. Располагают его под наклоном возле одной или нескольких стен. Он занимает не слишком много места, удобен. Благодаря нескольким ярусам позволяет разместить большое поголовье птицы.

Простой из брусков

К минусам этого вида можно отнести постоянную конкуренцию: более сильные и активные куры будут стараться занять самые высокие позиции, вытесняя более слабых вниз. С точки зрения гигиены, этот вид также сильно уступает одноярусным, использование которых предотвращает возможность попадания помета на ниже сидящих особей.

Угловой многоярусный

Одна из разновидностей классического многоярусного насеста. Отличие этой модели в том, что перекладины расположены в углу комнаты. Они занимают мало места, и позволяют более практично использовать пространство. Такой вид можно использовать, когда поголовье не превышает 20 особей.

Угловой вариант подходит для небольших помещений

Из брусков по периметру

Благодаря расположению вдоль стен экономится пространство. Такие перекладины удобны для птиц. Каждая особь может выбрать наиболее привлекательное положение в любой части сарая.

Этот вид прост в изготовлений. Имеет только один минус – не подходит для большого поголовья.

Насест-короб

Еще одна занятная идея для тех, кто выращивает до 10 -15 голов птицы. Отличное решение для небольших курятников. Короб прост в изготовлении, удобен, его можно разместить в любом месте сарая и при необходимости передвинуть.

Насест-короб

Гигиенический насест-стол

Более упрощенная разновидность короба. Как и предыдущий вариант он легко переносится, быстро чистится от помета. Недостаток – один стол может вместить порядка 15-20 птиц, что не позволяет использовать его для хозяйств с большим поголовьем.

Решетчатый насест для кур

Он может изготавливаться с перекладиной или без нее. Во втором случае короб основания поднимается над уровнем пола.  На ночь решетка опускается, куры садясь и вставая не пачкают ноги в помет. Все что нужно делать: освобождать ящик по мере наполнения. Однако несмотря на привлекательность конструкции подходит она только для разведения нескольких несушек. Стоит учесть и тот вариант, что применять решетчатый насест без жердей специалисты не рекомендуют в холодном сарае, по причине риска обморожения лап.

Решетчатый насест

Насест с поддоном

По принципу функционирования такие модели напоминают решетчатые. Отличие заключается в том, что поддон можно устанавливать под перекладины, набитые в несколько рядов, позволяющие разместить большое количество несушек. Крепят его на дополнительные бруски на высоте 30-40 см над полом. Для более рационального использования пространства место под поддоном можно использовать в качестве дневного прохладного отдыха для птицы или оборудовать его гнездами для несушек.

Конструкция с поддоном

Технология изготовления насеста для несушек

Какой вариант подходит именно для вашего хозяйства, выбирать придется самостоятельно. Но технология изготовления каждого из описанных видов приблизительно одинакова:

Начать лучше с определения размера сарая, ориентации входной двери и прогулочной дверцы для кур. Намного облегчит задачу чертеж бедующего сарая, на котором сразу нужно отметить расстановку кормушек, поилок, гнезд и др.
Исходя из получившегося плана подбирают наиболее удобный вариант размещения перекладин для птиц. Нанесите предполагаемую конструкцию на чертеж, это поможет определить не попадет ли насест под сквозняк, а также удобно ли будет собирать яйца и чистить помещение.
Когда план готов, можно приступать к подготовке жердей. Лучше всего выбирать бруски, изготовленные из твердых лиственных пород не склонных к пригибанию и не выделяющих смолу.
Отобрав материал его нужно распилить согласно продуманным размерам и тщательно отшлифовать.
Решив собрать конструкцию из древесины хвойных пород, перед использованием ее лучше «закалить», пропустив в пламени паяльной лампы. Это исключит бактериальное гниение.
При изготовлении разновидностей с опорой на стену, нужно заранее подготовить опорные бруски с пазами

Важно чтобы сечение паза превышало сечение бруска на пару миллиметров. При таком расчете жерди легче вставить в паз, а держаться они будут крепко.
Для крепления можно использовать гвозди или шурупы

Все зависит от материала стен сарая. Используйте уровень, чтобы соблюсти горизонтальную ориентацию жердей.
Установив жерди в пазы опор их нужно проверить на прочность. Если брусок прогибается, следует установить добавочную опору в середине жерди.
Если обустроить многоярусную конструкцию выдвижным поддоном, можно решить проблему чистки помета. Но при этом поддон должен полностью занимать все пространство под жердями и немного выдаваться вперед.
При создании переносных вариантов необходимо взять четыре бруска. На два нижних устанавливается поддон, в верхних вырезают пазы под жерди. Учтите, что для опорных брусков переносных конструкций лучше выбирать толстые доски.

План небольшого курятника

Примерный план проектирования внутреннего пространства курятника

Скорость роста растений

Чтобы заметить движение, можно провести специальную видеосъемку. В результате происходящее за сутки можно пронаблюдать за несколько секунд. Ростовые движения растений ускоряются в сотни раз: на глазах ростки пробивают себе путь через почву, распускаются на деревьях почки, набухают и расцветают цветочные бутоны. В реальности очень быстро растет бамбук – в минуту на 0,6 мм. Еще большей скоростью роста обладают некоторые плодовые тела грибов. Диктиофор увеличивается в размерах на 5 мм всего лишь за одну минуту. Наибольшей подвижностью обладают низшие растения – это водоросли и грибы. К примеру, хламидомонада (водоросль) может быстро при помощи жгутиков перемещаться в аквариуме на освещенную солнцем сторону. Также передвигаются многие зооспоры, которые служат для размножения (у водорослей и грибов). Но вернемся к более сложным растениям. Цветковые совершают различные движения, которые связаны с процессом роста. Они бывают двух видов – это тропизмы и настии.

Открытие Дарвина

Теперь понятно, что тропизмы играют большую роль в процессе движения растений. Первым изучать причины, которые вызывают тропизм, начал великий англичанин Чарльз Дарвин. Именно им было установлено, что раздражение воспринимается в точке роста, в то время как изгиб – ниже, в зонах растяжения клеток. Ученый предположил, что в точке роста возникает вещество, перетекающее в зону растяжения, там и происходит изгиб. Современники Дарвина не поняли и не восприняли эту его новаторскую мысль. Только в ХХ веке ученые опытным путем доказали правоту открытия. Оказалось, что в конусах нарастания (в стебле и корне) образуется некий гормон гетероауксин, иначе — бета-индолилуксусная органическая кислота. Освещение влияет на распределение этого вещества. На теневой стороне гетероауксина меньше, на солнечной – больше. Гормон ускоряет обмен веществ и поэтому теневая сторона стремится изогнуться в сторону освещения.

Общая классификация движений растений

Движения растений учеными в целом классифицируется следующим образом:

  • Движение цитоплазмы и органоидов – внутриклеточные движения.
  • Локомоторные передвижения клеток с использованием специальных жгутиков.
  • Рост на основе растяжения клеток роста — сюда включается удлинение корней, побегов, осевых органов, рост листьев.
  • Рост корневых волосков, пыльцевых трубок, протонемы мхов, то есть верхушечный рост.
  • Движения устьиц – тургорные оборотные движения.

Локомоторные движения и движения цитоплазмы присущи как растительным, так и животным клеткам. Остальные типы принадлежат исключительно растениям.

Сократительные движения

У некоторых видов движение частей растений происходит быстрее, чем ростовые. Например, у кислицы или стыдливой мимозы возникают сократительные движения.

Существует два типа биогенного движения. Одним из них является локомоция всего организма и поэтому ограничена небольшими, просто организованными единицами в водной среде. Второй — изменение формы и ориентации целых органов сложных растений, обычно в ответ на конкретные стимулы.

Энергия для циклоза происходит от дыхательного метаболизма клетки. Механизм, вероятно, включает сократительные белки, очень похожие на актомиозин мышц животного. Локомоция клеток является характеристикой многих простых растений и гамет более высокоорганизованных. Подвижность в таких клетках вырабатывается ресничками, закрепленными в периферических слоях клетки и выступающими в окружающую среду.

Стыдливая мимоза произрастает в Индии. Она моментально складывает свои листья, если к ней прикоснуться. В наших лесах растет кислица, называют ее также заячья капуста. Еще в 1871 году профессор Баталин заметил удивительные свойства этого растения. Однажды, возвращаясь с лесной прогулки, ученый собрал букетик кислицы. При тряске по булыжной мостовой (он ехал на извозчике), листья растения сложились. Так профессор заинтересовался этим явлением и было открыто новое свойство: под воздействием раздражителей растение складывает листья.

Локомотив клеток обычно не является случайным, а направляется некоторым градиентом окружающей среды. Таким образом, локомоция может быть в ответ на конкретные химические вещества, и в этом случае это называется хемотаксисом. Легкие градиенты индуцируют фототаксис; температурные градиенты индуцируют термотаксис; и гравитация индуцирует геотаксис. Один или несколько из этих факторов окружающей среды могут действовать для управления движением до оптимальных условий жизни.

В высших растениях органы могут изменять форму и положение относительно тела растения. Когда изгиб или изгиб органа вызван спонтанно некоторым внутренним стимулом, он называется автономным движением. Однако наиболее распространенными движениями являются те, которые инициируются внешними стимулами, такими как свет и сила тяжести. В нервных движениях стимул обычно не имеет направленности, и поэтому движение не связано с направлением, из которого приходит стимул. В тропизмах стимул имеет направление, и направление движения растения связано с ним.

Вечером листики кислицы также складываются, причем в пасмурную погоду это происходит раньше. При сильном солнечном свете происходит такая же реакция, но раскрытие листьев после этого восстанавливается примерно через 40-50 минут.

Движение животных

Основные движения растений мы рассмотрели. Как же движутся животные и в чем проявляются отличия этих процессов у животных и растений?

Любые виды животных имеют способность перемещения в пространстве, в отличие от растений. Во многом это зависит от среды обитания. Организмы способны передвигаться под землей, на поверхности, в воде, в воздухе и так далее. У многих способности к движению во многом схожи с человеческими. Все зависит от различных факторов: строения скелета, наличия конечностей, их формы и многого другого. Движение животных подразделяется на несколько типов, к основным относятся следующие:

  • Амебное. Такое движение характерно для амеб — одноименных организмов. Тело таких организмов одноклеточное, оно перемещается при помощи ложноножек – специальных выростов.
  • Простейшее. Аналогично амебному передвижению. Простейшие одноклеточные организмы перемещаются при помощи вращательных, колебательных, волнообразных движений вокруг собственного туловища.
  • Реактивное. Такой тип движения также характеризует простейшие организмы. В этом случае движение вперед происходит благодаря выбросу особой слизи, который толкает организм.
  • Мышечное. Самый совершенный тип движения, который свойственен всем многоклеточным. Сюда же включается и человек – высшее создание природы.

Открытие Дарвина

Теперь понятно, что тропизмы играют большую роль в процессе движения растений. Первым изучать причины, которые вызывают тропизм, начал великий англичанин Чарльз Дарвин. Именно им было установлено, что раздражение воспринимается в точке роста, в то время как изгиб — ниже, в зонах растяжения клеток. Ученый предположил, что в точке роста возникает вещество, перетекающее в зону растяжения, там и происходит изгиб. Современники Дарвина не поняли и не восприняли эту его новаторскую мысль. Только в ХХ веке ученые опытным путем доказали правоту открытия. Оказалось, что в (в стебле и корне) образуется некий гормон гетероауксин, иначе — бета-индолилуксусная органическая кислота. Освещение влияет на распределение этого вещества. На теневой стороне гетероауксина меньше, на солнечной — больше. Гормон ускоряет обмен веществ и поэтому теневая сторона стремится изогнуться в сторону освещения.

Существует два типа движения растений: абиогенные движения, которые возникают исключительно из физических свойств клеток и, следовательно, происходят в неживых тканях или органах; и биогенными движениями, которые происходят в живых клетках или органах и требуют энергии, поступающей из метаболизма.

Сушка или увлажнение определенных структур вызывает дифференциальные сокращения или разложения на двух сторонах ячеек и, следовательно, вызывает движения кривизны. Такие движения называются гигроскопичными и обычно связаны с освобождением и рассеиванием семян и споры. Примеры такого движения происходят в «парашютных» волосках плода одуванчика, которые закрываются, когда они влажны, но открыты, когда воздух сух, чтобы вызвать высвобождение из головок и дать плавучесть для рассеивания ветра.

Выводы

Движения растений во многом отличаются от движений животных, но все-таки они существуют. Рост растений — наглядное этому подтверждение. Основные отличия между ними следующие:

  • Растение находится в одном месте, в большинстве случаев имеет корень. Любые виды животных способны передвигаться в пространстве самыми разными способами.
  • В своих движениях животные всегда имеют определенную цель.
  • Животное передвигается всем телом, целиком. Растение способно к движению отдельными своими частями.

Движение – это жизнь, всем известно это высказывание. Все живые организмы на нашей планете способны к движению, пусть оно даже и имеет какие-либо отличия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector