Уксуснокислое брожение: возбудители и практическое использование

Пищевые продукты, получаемые с использованием брожения (по регионам)

  • По всему миру: дрожжевой хлеб, спирт, вино, уксус, сыр, йогурт, пиво, сидр
  • Азия

    • Индия: achar, gundruk, индийские пикули, идли
    • Юго-Восточная Азия: asinan, bai-ming, belacan, burong mangga, dalok, jeruk, кимчхи, рыбный соус, leppet-so, miang, мисо, nata de coco, naw-mai-dong, pak-siam-dong, paw-tsaynob в снегу (雪裡蕻), саке, seokbakji, соевый соус, сычуаньская капуста (四川泡菜), tai-tan tsoi, такуан, tsa tzai, цукэмоно, yen tsai (醃菜), пахучий соевый творог, некоторые виды чая
    • Центральная Азия: кумыс (кобылье молоко), кефир, шубат (верблюжье молоко), айран
  • Африка: семена гибискуса, острый перцовый соус, lamoun makbouss, mauoloh, msir, mslalla, oilseed, огили, огири, гарри
  • Америка: сыр, маринованные овощи, квашеная капуста, семена люпина, семена масличных культур, шоколад, ваниль, табаско, квашеная рыба, рыбьи головы, морж, тюлений жир, птица (в эскимосской кухне)
  • Ближний Восток: мацони, kushuk, маринованные лимоны, айран, mekhalel, тан, торси, tursu
  • Европа: сыр, квашеная капуста, кисломолочные продукты, такие как творог, кефир и простокваша, айран, мацони, квашеная рыба, сюрстрёмминг
  • Россия: простокваша, сметана, квас, квашеная капуста, мочёные яблоки, мочёные сливы, мочёные груши, мочёные арбузы, мочёный виноград, бочковые солёные огурцы, солёные томаты, солёные грибы, брага
  • Регионы Арктической зоны: копальхен

Гомоферментативное молочнокислое брожение

Гомоферментативное молочнокислое брожение представляет собой энергетическую сторону образа жизни группы гомофермен-тативных молочнокислых бактерий. Черты древности этой группы видны не только в процессе добывания ее представителями энергии, но и в других сторонах их метаболизма, о чем будет сказано в разделе, посвященном краткой характеристике этих бактерий.

Гомоферментативное молочнокислое брожение, в основе которого лежит гликолитический путь разложения глюкозы, является единственным способом получения энергии для группы эубак-терий, которые при сбраживании углеводов превращают в молочную кислоту от 85 до 90 % сахара среды. Бактерии, входящие в данную группу, морфологически различны. Это кокки, относящиеся к родам Streptococcus и Pediococcus, а также длинные или короткие палочки из рода Lactobacillus. Последний подразделяется на три подрода.

Схема регенерации окисленного НАД в аэробных ( А и анаэробных условиях. В — молочнокислое брожение. С — спиртовое брожение.| Виды брожений, основанные на гликолизе.

Гомоферментативное молочнокислое брожение идентично по химизму реакциям гликолиза в анаэробных условиях.

Гомоферментативное молочнокислое брожение вызывают бактерии рода Lactobacillus и стрептококки. Они могут сбраживать различные сахара с 6 — ю ( гексозы) или 5 — ю ( пентозы) углеродными атомами, некоторые кислоты. Однако круг сбраживаемых ими продуктов ограничен.

В процессе гомоферментативного молочнокислого брожения синтезируются 2 молекулы АТФ на 1 молекулу сброженной глюкозы; в процессе дыхания при полном окислении молекулы глюкозы образуется 38 молекул АТФ. В обоих случаях эффективность запасания выделяющейся энергии в макроэргических связях АТФ приблизительно одинакова.

Возникнув как первый, далекий от совершенства энергетический процесс, гомоферментативное молочнокислое брожение не было потом отброшено в процессе эволюции. Наоборот, оно закрепилось и существует сейчас в виде гликолиза у подавляющего большинства прокариот, дрожжей, грибов, а также у высших животных и растений, но только как первый этап более совершенного энергетического процесса, сформировавшегося в результате последующего развития способов получения энергии живыми организмами. Чем объясняется такая судьба гомоферментативного молочнокислого брожения. Вероятно, оказалось выгодным использовать его в качестве первого подготовительного этапа по следующим причинам: 1) высокая энергетическая эффективность ( не путать с энергетическим выходом процесса.

Собственно гликолиз — это определенная последовательность ферментативных реакций от углевода до пировиноградной кислоты, поэтому, строго говоря, гликолиз не является синонимом гомоферментативного молочнокислого брожения, но 10 из 11 реакций у этих процессов идентичны.

Схема энергетических и транспортных процессов у молочнокислых бактерий. Темный кружок — переносчик. В — молекула растворенного вещества. глюкоза поступает в клетку с помощью фосфотрансфе-разной системы. Остальные объяснения в тексте.

Обратимо функционирующие протонные АТФазы мы находим у первичных анаэробов, получающих энергию в процессе брожения. Обнаружено, что выделение во внешнюю среду молочной и уксусной кислот молочнокислыми бактериями и клостридиями приводит к созданию на ЦПМ протонного градиента. У стрептококков, осуществляющих гомоферментативное молочнокислое брожение, молочная кислота накапливается в клетке в виде аниона, для которого ЦПМ практически непроницаема.

Возникнув как первый, далекий от совершенства энергетический процесс, гомоферментативное молочнокислое брожение не было потом отброшено в процессе эволюции. Наоборот, оно закрепилось и существует сейчас в виде гликолиза у подавляющего большинства прокариот, дрожжей, грибов, а также у высших животных и растений, но только как первый этап более совершенного энергетического процесса, сформировавшегося в результате последующего развития способов получения энергии живыми организмами. Чем объясняется такая судьба гомоферментативного молочнокислого брожения. Вероятно, оказалось выгодным использовать его в качестве первого подготовительного этапа по следующим причинам: 1) высокая энергетическая эффективность ( не путать с энергетическим выходом процесса.

Окислительно-восстановительные превращения имеют место на двух этапах процесса, именно они приводят к получению клеткой энергии. Это результат того, что процесс замкнут на себя, т.е. субстрат является и источником веществ — доноров электронов и источником веществ — их акцепторов. Все это, вместе взятое, определило судьбу гомоферментативного молочнокислого брожения.

Выделение в культуру уксуснокислых бактерий — Уксуснокислые бактерии

Морфологические признаки. Морфологию уксуснокислых бактерий изучают при выращивании культур на какой-либо из описанных питательных сред, например, на вине с суслом. Определяют внешние признаки (характер пленки на жидкой среде и колоний — на плотной), вид клеток под микроскопом (форма и подвижность), размеры и др.

Пробу на каталазу ведут упрощенным методом: на предметное стекло берут каплю перекиси водорода и добавляют одну петлю бактериальной массы. При микроскопировании с малым увеличением в случае наличия каталазы у культуры наблюдается интенсивное выделение пузырьков кислорода.

Способность окислять этиловый спирт и уксусную кислоту. Для изучения этого свойства делают посев культуры бактерий на дрожжевой агар с 3% об. этилового спирта или уксусной кислоты и 2% мела. Через 3—4 сут вокруг колоний уксуснокислых бактерий возникают зоны растворения мела.

Способность окислять молочную кислоту. Ее определяют посевом бактерий на дрожжевой агар с 2% лактата кальция. Через несколько дней вокруг колоний бактерий, окисляющих молочную. кислоту, образуется расплывчатый белый ореол.

Кетогенная способность. Определяется по методу оксидо-грамм Фратера. Для получения их на поверхность дрожжевого агара с глицерином (2%) в чашках Петри наносят (петлей, пипеткой) густую бактериальную массу. Чашки выдерживают в термостате при температуре 30°С

Через сутки агар осторожно заливают раствором Фелинга. Бактерии, окисляющие глицерин в диоксиацетон, образуют закись меди, и зона вокруг бактериальной массы окрашивается в желтый цвет

По количеству за-кисной меди можно судить об относительной активности окисления многоатомных спиртов в кетосоединения.

Способность к окислению глюкозы. Для определения способности бактерий окислять глюкозу в глюконовую кислоту делают их посев на дрожжевой агар, содержащий 10% глюкозы и 3% мела. Вокруг колоний бактерий, окисляющих глюкозу, образу ются прозрачные зоны. Если бактерии обладают способностью

окислять глюконовую кислоту, то позднее вокруг колоний образуются кристаллы глюконата кальция.

Реакция на целлюлозу. Определяется раствором йода (0,5 г йода в 100 мл 1,5%-ного раствора йодистого калия), В каплю раствора на предметном стекле вносят каплю бактериальной пленки и добавляют 2 капли 50—60%-ной (по объему) серной кислоты. О наличии целлюлозы судят по окрашиванию клеток в синий цвет.

Колонии бактерий, образующие крахмал, также окрашиваются в синий цвет.

Способность уксуснокислых бактерий усваивать различные источники углерода (сахара, спирты, кислоты). Эту способность определяют по интенсивности роста бактерий (в пробирках или в чашках Петри) на плотной синтетической питательной среде Ридер с добавлением 0,1%-ного дрожжевого автолизата. В качестве индикатора добавляют на 100 мл среды 3 мл 0,04%-ного щелочного раствора бромтимол синего. Сахара и спирты добавляют в количестве 1%, органические кислоты — 0,2% (уксусная кислота 0,1%). Контролем служит среда без добавления источников углерода. Степень усвоения источников углерода оценивают по массе выросших бактерий и изменению цвета индикатора.

Маслянокислое брожение

Маслянокислое брожение осуществляется в большинстве случаев облигатными анаэробами, т. е. организмами, способными существовать только в бескислородной среде.

В ходе маслянокислого Б. образуются не только масляная к-та, но в некоторых случаях и весьма значительные количества этилового спирта, молочной н уксусной кислот, а также газообразного водорода и углекислого газа. С помощью маслянокислого Б. осуществляется разложение органических веществ в условиях недостатка или полного отсутствия кислорода (болота, заболоченные места). Большое промышленное значение имеет маслянокислое Б. пектиновых веществ, происходящее при замочке стеблей льна, конопли и получении волокон. Вместе с тем деятельность бактерий, осуществляющих этот вид Б., необходимо предотвращать при приготовлении различного рода пищевых продуктов во избежание ухудшения вкуса и порчи последних (напр., прогоркание сливочного масла, силоса и т. п.).

Спиртовое, молочно- и маслянокислое Б.— основные типы Б.; остальные многочисленные виды Б. представляют собой либо различные их сочетания, либо осуществляются на базе тех или иных продуктов, возникающих в ходе основного вида Б. Так, в результате уксуснокислого брожения происходит окисление этилового спирта при участии кислорода воздуха. Этот вид Б. осуществляется специфическими уксуснокислыми бактериями. Суммарное уравнение уксуснокислого Б.:

CH3CH2OH + O2 = CH3COOH + H2O.

По исчерпании запасов спирта бактерии окисляют образованную им уксусную к-ту до углекислого газа и воды.

К Б., осуществляющемуся с участием О2, относится глюконовокислое брожение — образование глюконовой к-ты из глюкозы:

C6H12O6 + H2O + O2 → CH2OH(CHOH)4COOH + H2O2.

Оно вызываемся нек-рыми бактериями и плесневыми грибами. Глюконовая к-та — ценное соединение, широко применяемое в медицине и фарм, промышленности (см. Глюконовая кислота).

Лимоннокислоe брожениe осуществляется нек-рыми представителями плесневых грибков; особенно эффективны отдельные штаммы Aspergillus niger. Исходным продуктом служит Пировиноградная к-та, превращение к-рой идет одновременно в двух направлениях. Часть ее окисляется в уксусную, тогда как другая, присоединяя углекислоту, образует щавелевоуксусную к-ту. При конденсации уксусной и щавелевоуксусной кислот образуется лимонная к-та. Помимо лимонной к-ты, при лимоннокислом Б. образуются бутиловый спирт, ацетон, а также этиловый спирт, углекислый газ и водород.

Бутанолово-ацетоновое брожение осуществляют анаэробные бактерии Clostridium acetobutylicum. Главные продукты, образующиеся в ходе этого вида Б.,— н-бутиловый спирт, ацетон, этиловый спирт, углекислота, водород. Ацетоуксусная к-та (CH3COCH2COOH) и образующийся при ее декарбоксилировании ацетон (CH3COCH3), а также β-оксимасляная к-та составляют группу так наз. ацетоновых тел (см. Кетоновые тела), которые накапливаются в крови и моче животных при различных патологических состояниях и заболеваниях (диабет, голодание). В нормальных же условиях эти соединения окисляются с образованием безвредных для организма углекислоты и воды.

Высокая экономическая эффективность, чистота получаемых при Б. ценных продуктов лежат в основе все более широкого использования Б. в самых различных отраслях народного хозяйства.

Библиография: Кретович В.Л. Основы биохимии растений, М., 1971; Малер Г. иКордес Ю. Основы биологической химии, пер. с англ., М., 1970; Рубин Б. А. Курс физиологии растений, М., 1971;Рэкер Э. Биоэнергетические механизмы, пер. с англ., М., 1967. библиогр.; Шапошников В. Н. Техническая микробиология, М., 1948; H a s s i d W. Z. Transformation of sugars in plants, Ann. Rev. plant Physiol., v. 18, p. 253, 1967, bibliogr.

1.2.5 Дрожжи

Дрожжи
– это высшие грибы, утратившие способность
образовывать мицелий и превратившиеся
в одноклеточные организмы

Относятся
к надцарству эукариот, отделу истинных
грибов, большинство дрожжей являются
представителями двух классов: аскомицетов
и дейтеромицетов. Кроме того, дрожжи
делятся на спорогенные и аспорогенные.
В молоке и молочных продуктах чаще всего
встречаются спорогенные дрожжи семейства
Saccharomycetaceae (например, родов Saccharomyces,
Zygosaccharomyces) и аспорогенные дрожжи семейства
Torulopsidaceae
(родов Torulopsis,
Candida,
Mycoderma
и др.).

В
основу классификации дрожжей положены
следующие признаки: различия в характере
их вегетативного размножения, способность
к спорообразованию и половому размножению,
а также другие морфологические и
физиологические свойства.

Многие
дрожжи являются возбудителями спиртового
брожения – процесса анаэробного
окисления сахаров до этилового спирта.

Возможность
дрожжей размножаться в молоке и молочных
продуктах определяется их способностью
сбраживать или окислять лактозу, а также
наличием в молоке микрофлоры, обладающей
(-галактозидазной активностью. В связи
с этим дрожжи, встречающиеся в молоке
и молочных продуктах, делятся на 3 группы:

1.
Дрожжи, не способные к спиртовому
брожению, но потребляющие лактозу путем
непосредственного окисления (в молоке
растут, но лактозу не сбраживают). К
таким дрожжам относятся дрожжи родов
Mycoderma, Torula.

2.
Дрожжи не сбраживающие лактозу, но
сбраживающие другие сахара. Эти дрожжи
могут развиваться только в совместной
культуре с микроорганизмами, которые
обладают (-галак-тозидазной активностью
и осуществляют гидролиз молочного
сахара до глюкозы и галактозы. Такими
дрожжами являются большинство видов
дрожжей рода Saccharomyces.

3.
Дрожжи, сбраживающие лактозу. Таких
дрожжей не много. Наиболее часто в
молочных продуктах встречаются следующие
виды дрожжей этой группы: Saccharomyces
lactis,
Saccharomyces
fragilis,
Torulopsis
kefir,
Torulopsis
sphaerica,
Candida
pseudotropicalis
и др.

Большинство
дрожжей являются факультативными
анаэробами, некоторые дрожжи – аэробы.
Хорошо растут в кислой среде (ацидофилы).
По отношению к температуре дрожжи
являются мезофилами, так как оптимальная
температура для их развития 25-300С. Более
высокая температура стимулирует развитие
дрожжей вида Torulopsis sphaerica и дрожжей, не
сбраживающих лактозу. В качестве
источника углерода лучше всего используют
гексозы, другие углеводы, спирты,
органические кислоты. Источниками азота
для них являются соли аммония, аминокислоты,
пептиды.

Естественным
местообитанием дрожжей является
поверхность плодов и ягод, сок и
поверхность листьев, нектар, вода, почва,
кожные покровы и пищеварительный тракт
людей и животных. Имеются патогенные и
условно-патогенные формы дрожжей,
которые вызывают кандидомикозы.

Роль
дрожжей в формировании качества молочных
продуктов исключительно велика. Они
используются при производстве кефира
и кумыса, являясь не только возбудителями
спиртового брожения, но и продуцентами
витаминов группы В, антибиотических
веществ, подавляющих развитие туберкулезной
палочки и других патогенных микроорганизмов.
Продукты жизнедеятельности дрожжей
активизируют развитие молочнокислых
бактерий. Некоторых дрожжи используются
в производстве масла, так как предотвращают
развитие на его поверхности микроскопических
грибов и, таким образом, повышают
стойкость масла в процессе хранения.

С
другой стороны, дрожжи являются
вредителями производства многих молочных
продуктов. Интенсивное развитие дрожжей
незаквасочного происхождения нередко
приводит к вспучиванию, изменению вкуса
творога, сметаны, сладких творожных
изделий, обильному газообразованию
сгущенного молока с сахаром (бомбаж
банок), возникновению спиртового вкуса
и запаха, а также к вспучиванию сыров9.

Уксуснокислые бактерии

Являются вредной микрофлорой, вызывающей уксусное скисание вина. Уксуснокислые бактерии принадлежат к роду Acetobacter. Они имеют палочковидную форму. Клетки короткие, толстые, заключены в капсулу, располагаются в жидкой среде попарно, редко оди­ночно, иногда в виде цепочек.

Некоторые уксуснокис­лые бактерии подвижны. Характеризуются высокой скоростью размножения: при благоприятных условиях из одной клетки за 12 часов может образоваться 17 млн. бактерий.

Свое название уксуснокислые бактерии получили из-за спо­собности окислять этиловый спирт в уксусную кислоту при свободном доступе кислорода воздуха.

Уксуснокислые бактерии легко и быстро размножаются на поврежденных ягодах винограда; попав в сусло, при брожении его они не погибают. Для своего роста и развития они нужда­ются в питательных веществах: углероде, азоте (в основном усваивают его из аминокислот), витаминах. Все уксуснокислые бактерии хорошо используют в качестве источника углерода моносахариды, многоатомные спирты, могут усваивать кислоты, в том числе вырабатываемую ими уксусную кислоту.

Такое явление называется переокислением. Энергию уксуснокислые бактерии получают за счет реакций окисления. Окисление бак­териями этилового спирта в уксусную кислоту сопровождается образованием этилацетата, который придает винам неприятные тона во вкусе и аромате, характерные для уксуснокислого скисания. Из 1 % об. этанола образуется 1 г уксусной кислоты.

Помимо этилового спирта, уксуснокислые бактерии окисля­ют другие одноатомные спирты, а именно: пропиловый спирт — в пропионовую кислоту, бутиловый — в масляную, изоамиловый — в изовалериановую кислоту, а также многоатомные спир­ты— сорбит, глицерин, маннит.

При развитии уксуснокислых бактерий на поверхности вина, виноградного сока, других жидких продуктов переработки вино­града образуются слизистая пленка или пристенное кольцо. Через некоторое время возможно погружение пленки в жид­кость. Характерной особенностью пленки из уксуснокислых бактерий является ее способность всползать на стенки стеклян­ной посуды. Чаще всего бактерии образуют пленку совместно с пленчатыми дрожжами родов Candida, Pichia, Hansenula.

На развитие уксуснокислых бактерий большое влияние ока­зывает температура. Для них благоприятен широкий диапазон: от 10 до 35 °С. Бактерии сохраняются при более низких тем­пературах, но погибают при более высоких в зависимости от величины рН, концентрации сернистой кислоты и других фак­торов. Так, в столовом вине при отсутствии кислорода клетки вида Acetobacter aceti погибают в течение 10 минут при температуре 50 °С.

С повышением крепости столовых вин активность уксусно­кислых бактерий снижается, однако при температуре 20—25°С бактерии способны развиваться и подвергать скисанию вина крепостью 14—16% об.

Уксуснокислые бактерии чувствительны к SO2: при содер­жании его в количестве 125—150 мг/л жизнедеятельность бак­терий приостанавливается при температуре 15—18 °С только на 10 дней; при введении в виноматериал S02 в количестве 50 мг/л в анаэробных условиях они теряют свою жизнедеятель­ность при температуре 10°С и ниже на 5—10-е сут, а при 28— 35 °С — на несколько часов. Для инактивации всех видов уксус­нокислых бактерий необходимо сульфитировать вина до содер­жания в них общего количества S02 не менее 175 мг/л.

Уксуснокислые бактерии развиваются в вине, соках, слабо­алкогольных напитках, в не полностью долитых или недоста­точно плотно закрытых емкостях, при пористой клепке бочек, при брожении мезги, в таре с остатками вина. Вино, в котором брожение закончилось, надо хранить без доступа воздуха.

При хранении вин в металлических и железобетонных емкостях, заполненных ниже установленных норм (недолитых), рекомендуется использовать герметизирующий состав СВС с 2% метабисульфита калия. Производство виноградных соков и напитков на их основе базируется на использовании пасте­ризации — кратковременного нагрева продукта в бескислород­ных условиях при температуре 55—75 °С и выше. В целях про­филактики рекомендуется периодически производить дезинфек­цию помещений, тары и коммуникаций.

Полезные свойства

Помимо того, что жизнедеятельность бактерий наносит вред виноделию, можно выделить и целый ряд примеров удачного использования человеком характеристик микроорганизмов.

Так, главная роль уксуснокислым бактериям отведена в производстве и изготовлении столового уксуса из вина или разбавленного спирта. Осуществляется это по сей день двумя способами.

Первый представляет собой более медленный, но тщательный процесс, называемый орлеанским или просто французским. Для него необходимо подготовить вино, предварительно подкисленное или разбавленное водой. Поместить его в подготовленные плоские емкости, чтобы поверхность соприкосновения с воздухом была максимальной, и выпустить в жидкость частицы уже образованной ранее пленки Acetobacter orleanense. Она имеет желтый цвет и прочную текстуру, позволяющую сохранить прозрачность жидкости под ней.

После окончания брожения из емкости аккуратно забирают часть субстрата и заменяют его аналогичным количеством разбавленного вина, после чего процесс возобновляется.

Второй способ более быстрый и применим для окисления разбавленного спирта. Для этого его пропускают через специальные емкости с буковыми стружками, чтобы также увеличить поверхность сцепления с бактериями. Емкости при этом обязательно снабжены ложными доньями с возможностью пропускать через них воздух. Таким образом, разбрызгиваемый потоками воздуха спирт оседает на стружке и окисляется, после чего его отбирают из сосуда снизу, а сверху доливают новый субстрат.

Кроме этого клетки используются при:

  • мочении яблок вместе с дрожжами;
  • производстве аскорбиновой кислоты;
  • выращивании чайного гриба;
  • изготовлении кефира.

Вообще, в производстве абсолютно всех молочнокислых продуктов наблюдается параллельное брожение, то есть молочнокислые и уксуснокислые бактерии вместе обеспечивают появление продуктов переработки молока в таком виде, как мы и привыкли.

Основные типы брожения

  • Спиртовое брожение(осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и диоксид углерода. Из одной молекулы глюкозы в результате получается две молекулы спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлеба, пивоварении, виноделии и винокурении. Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя диоксид углерода обычно уходит в атмосферу, хотя в последнее время его стараются утилизировать.
  • Молочнокислое брожение, в ходе которого пируват восстанавливается до молочной кислоты, осуществляют молочнокислые бактерии и другие организмы. При сбраживании молока молочнокислые бактерии преобразуют лактозу в молочную кислоту, превращая молоко в кисломолочные продукты (йогурт, простокваша и др.); молочная кислота придаёт этим продуктам кисловатый вкус.

Молочнокислое брожение может происходить также в мышцах животных, когда потребность в энергии выше, чем обеспечиваемая уже имеющимся АТФ и работой цикла Кребса. При достижении концентрации лактата больше 2 ммоль/л начинает работать интенсивнее цикл Кребса и возобновляет работу цикл Кори.

Обжигающие ощущения в мышцах во время тяжёлых физических упражнений соотносятся с недостаточной работой цикла Кори и повышением концентрации молочной кислоты выше 4ммоль/л, поскольку кислород преобразуется в диоксид углерода аэробным гликолизом быстрее, чем организм восполняет запас кислорода; в то же время нужно помнить, что болезненность в мышцах после физических упражнений может быть вызвана не только высоким уровнем молочной кислоты, но и микротравмами мышечных волокон. Организм переходит к этому менее эффективному, но более скоростному методу производства АТФ в условиях повышенных нагрузок, когда цикл Кребса не успевает обеспечивать мышцы АТФ. Затем печень избавляется от излишнего лактата, преобразуя его по циклу Кори в глюкозу для возврата мышцам для повторного использования или преобразования в гликоген печени и наращивания собственных энергетических запасов.

Считается, что анаэробный гликолиз был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках — более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.

  • Уксуснокислое брожение осуществляют многие бактерии. Уксус (уксусная кислота) — прямой результат бактериальной ферментации. При мариновании продуктов уксусная кислота предохраняет пищу от болезнетворных и вызывающих гниение бактерий.
  • Маслянокислое брожение приводит к образованию масляной кислоты; его возбудителями являются некоторые анаэробные бактерии рода Клостридиум.
  • Щелочное (метановое) брожение — способ анаэробного дыхания определённых групп бактерий — используют для очистки сточных вод пищевой и целлюлозно-бумажной промышленности, для сбраживания избыточного активного ила.

Значение уксуснокислых бактерий

Многим виноделам известна ситуация, когда из-за попадания в сосуд воздуха на поверхности напитка образовывалась пленка.

Данный процесс полностью портит вкус и свойства вина, делая его непригодным для употребления, а спровоцирован он бактериями уксуснокислого брожения.

Сами по себе такие микроорганизмы не представляют опасности и всегда находятся в вине и пиве, вред они начинают наносить только при контакте с воздухом.

Но сегодня и это, казалось бы, не очень хорошее свойство используют на благо человечества в определенных отраслях промышленности.

Способности микроорганизмов

Уксуснокислые бактерии в реальности задействованы в процессах не только скисания вин. Они способны окислять такие спирты, как этиловый, пропиловый и бутиловый, образовывая из них уксусную, пропионовую и масляную кислоты соответственно.

То есть любой напиток с содержанием такого спирта может быть испорчен благодаря жизнедеятельности бактерий.

Не стоит опасаться только за жидкости, содержащие метиловый и высшие спирты, поскольку они при окислении образуют ядовитый для микроорганизмов продукт.

Особенности процесса

Само окисление спиртов под воздействием уксуснокислых бактерий представляет собой дегидрирование. Весь процесс можно выразить в химической формуле, где изначально берется этиловый спирт, превращаемый под воздействием кислорода в уксусную кислоту, воду и выделяемую энергию:

СН3СН2ОН + О2 = СН3СООН + Н2О + энергия

Если спирта в среде находится слишком много, то результатом процесса будет образование только кислоты и минимальный выброс энергии, чего недостаточно для дальнейшей жизнедеятельности бактерий. Именно поэтому им приходиться окислять как можно большее количество спирта, что сближает окисление с другими анаэробными процессами, но оставляет его индивидуальным по определенным характеристикам.

Отличительной чертой воздействия уксуснокислых бактерий всегда остается образование на поверхности субстрата пленки.

Работа уксуснокислых бактерий и их свойства зависят от разновидности микроорганизмов и могут менять цвет, толщину, крепость и другие характеристики. На сегодняшний день открыто уже огромное количество видов этих типичных аэробов.

В жизни уксуснокислые бактерии встречаются в воздухе, почве, любом продукте брожения, на поверхности ягод и плодов, воды и так далее.

Биохимия

Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.

Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD+), который требуется для гликолиза

Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.. В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид)

В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.

В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.

Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высокоокисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до диоксида углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырёх молекул АТФ (ср. около 36 молекул путём аэробного дыхания).

Негативные свойства

Уксуснокислые бактерии, являясь участниками процессов брожения, наносят вред плодам. Для винограда они считаются патогенными. Вред этих бактерий при консервации или засолке заключается в риске перекисания овощей.

В пиве и вине практически всегда содержатся уксуснокислые микроорганизмы. Само их присутствие не приносит вред. Но как только будет обеспечен доступ воздуха, бактерии активизируются и в продуктах начнется уксуснокислое брожение (скисание). В вине будет образовываться уксусная кислота, которая из-за большей плотности опускается на дно емкости. В результате вину может быть причинен непоправимый вред за счет появления неприятного запаха и резкого кислого вкуса. Процесс может продолжаться до полного превращения содержимого в уксус. Аналогичный процесс наносит вред и вкусу пива, делая его кислым.

11.6 Окисление жиров и высших жирных кислот микроорганизмами. Микроорганизмы — возбудители порчи жиров

Жиры представляют
собой сложные эфиры глицерина и высших
жирных кислот.

Так как жиры –
высокомолекулярные соединения, то в
неизменном виде внутрь клетки они
попасть не могут. Поэтому вначале
происходит гидролиз жира при участии
фермента липазы, которая имеется у
многих микроорганизмов. В результате
образуются глицерин и высшие жирные
кислоты. Этот процесс не обеспечивает
клетки энергией, поэтому образовавшиеся
продукты гидролиза используются
различными микроорганизмами в качестве
энергетического материала. Процесс
протекает только в аэробных условиях.

Глицерин подвергается
окислению уксуснокислыми бактериями
до диоксиацетона и далее микроскопическими
грибами до углекислого газа и воды.

Высшие жирные
кислоты окисляются труднее и медленнее.
В процессе окисления образуются
промежуточные продукты: кетоны, альдегиды,
оксикислоты и др., которые придают
окисленному жиру прогорклый вкус.

Возбудители.
Наиболее активными микроорганизмами
в процессе разложения жира являются
бактерии рода Pseudomonas, особенно
флуорисцирующие (продуцирующие пигменты)
и мицелиальные грибы: Oidium lactis, многие
виды Aspergillus, Penicillium.

Практическое
значение процесса

Процесс
разложения жиров отмерших животных и
растенийпроисходитпостоянно и
имеетбольшое
значение вкруговороте
веществ в природе.

С другой стороны,
в пищевой промышленности микроорганизмы,
окисляющие жиры, приносят вред, вызывая
порчу пищевых жиров и жира, содержащихся
в различных пищевых продуктах.

Следует учитывать,
что многие жирорасщепляющие микроорганизмы
являются психрофилами, поэтому способны
развиваться при хранении пищевых
продуктов в охлажденном состоянии.

Значение употребления молочнокислых продуктов

В свежем молоке, помимо углеводов и жиров, содержится лактоза, которую переносит не каждый организм, а в молочнокислых продуктах содержится молочная кислота. Она выполняет в организме такие функции:

  • активизирует выработку желудочного сока;
  • улучшает метаболизм;
  • усиливает сокращения кишечника.

В ходе сквашивания молочный белок казеин расщепляется на аминокислоты и пептиды, скорость усвоения которых выше в 2-3 раза. Лактобактерии производят лактозу, помогающую усваивать молочные углеводы. Молочнокислые продукты идеально подходят детям и пожилым людям, чья способность усваивать лактозу и молочный белок ниже, чем у взрослого человека. Жизнедеятельность бактерий в организме способствует выработке витаминов В1, В2, С и антибиотиков. Живые антибиотики, вырабатываемые организмом, не только подавляют жизнедеятельность болезнетворных микробов, но и убивают их. В процессе роста детям необходим кальций и белок, которые в кисломолочных продуктах находятся в идеальной пропорции. Главная полезная особенность кисломолочных продуктов ─ это регулировка микрофлоры кишечника. В организме человека живых бактерий до 100 триллионов, но не все они полезные. Есть бактерии, чья жизнедеятельность помогает человеку переварить пищу, они разрушают токсины, способствуют выработке витаминов. Это полезные. А есть вредные, вызывающие инфекции и выделяющие токсины. Если баланс этих бактерий в норме, то пищеварительная система работает как часы, в противном случае наблюдается дисбактериоз и снижается иммунитет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector